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Abstract. 42 survey participants demonstrate that it is visually possible to recognise the type of flow that created bedforms 

(e.g. sand dunes, riverbed ripples) from short distance-depth profiles, but this is much harder for individual forms. An 

interpreter's geoscience expertise does not help, indicating a machine learning or 'AI' algorithm might be trained well from the 10 

data alone, especially if multiple bedforms are used. 

1 Introduction 

Environmental flows shape the surface they flow over. The variety of features produced (e.g. sand ripples on a beach), known 

as bedforms, reflect and preserve characteristics (e.g. speed, depth) of the flowing ice, water or air (Venditti, 2012; Bullard et 

al., 2011; Storrar and Stokes, 2007). The relationships between bedform morphology and flow are contested where observation 15 

is extremely difficult, such as under ice-sheets (e.g. Clark et al., 2018; Hillier et al., 2018; Rose, 1987; King et al., 2009), and 

best understood for unidirectional water flow over sand in a laboratory setting, mimicking a river (e.g. Fig. 1a).  Even in this 

idealised fluvial setting, it is difficult to construct a 1-to-1 link between bedform type (e.g. ripples or dunes) and specific flow 

conditions (Venditti, 2012; Froehlich, 2020). Illustratively, ripples have a higher aspect ratio (𝐻 𝐿⁄ , for height (H) and length 

(L)) than dunes (e.g. Allen, 1968); yet the observational ranges overlap (Venditti, 2012; Yalin, 1972), creating uncertainty 20 

when attempting to link morphology with hydraulic conditions. Many variables related to hydraulics and/or the physics of 

sediment movement have been proposed to remove the overlap in bedform stability diagrams such as Fig. 1a (see Venditti, 

2012). Only recently, has a distinct and non-overlapping zonation of bedform type and flow structure been developed using a 

quantity called shear velocity (Duran Vinet et al., 2019). Inverting this result may help realise the aspiration of developing a 

means to reliably infer flow conditions from bedform morphology (e.g. Duran Vinet et al., 2019; Venditti, 2012; Myrow et al., 25 

2018), which is often the only option (e.g. sedimentary structures preserving the geological past, Mars)(e.g. Ohata et al., 2017; 

Edgett and Lancaster, 1993). 

 

Machine learning or 'AI' algorithms, such as Artificial Neural Networks (ANNs) offer an opportunity to examine this problem 

as they do not assume simple (e.g. linear or 1-to-1) relationships between inputs and predicted variables (Wang et al., 2009; 30 
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Faruk, 2010). This has been attempted for experimental parameters (Froehlich, 2020), but not for bedform morphology. There 

may be unexploited quantitative morphological subtleties to categorise bedforms, or even to accurately position them on 

stability diagrams. This work examines the scope for using ANNs to distinguish the flow conditions in which relict bedforms 

originated by asking if the ability exists in non-artificial (i.e. human) intelligence for two particulars: 

 35 

Q1 - Is it possible to identify the environment (e.g. river, desert) of a bedform's genesis from its shape? 

Q2 - In the fluvial environment, is it possible to distinguish flow conditions? 

2 Method, Data & Ethics 

An online survey (Supplementary Material) was conducted, initially at the 'Non-equilibrium flows and landforms' workshop 

(19th May 2021), with participation expanded using authors' close contacts (friends, colleagues, and family). For Q1, 40 

participants attributed distance-depth profiles across 34 individual bedforms, and 13 bedform sequences (≥3 bedforms) to one 

of four environments (fluvial [river], glacial, marine, aeolian [desert]). For Q2, participants ranked three profiles according to 

flow strength (shear velocity), thrice for individual forms, and thrice for bedform sequences. Examples were provided to isolate 

visual shape analysis from prior knowledge (Fig. 1b), black and white profiles were used to exclude contextual clues (e.g. 

dataset characteristics, other features in the landscape), and the order of options (e.g. B, A, C) was shuffled for each participant 45 

to prevent bias. Scale (e.g. metres) readily distinguishes environment without using bedform shape, so it was not given. 

 

Aeolian data are ASTER (v2) across linear and transverse dune types from the Namib desert (Bullard et al., 2011), glacial are 

from near Lough Gara in Ireland (Hillier and Smith, 2008), fluvial are from four laboratory experiments (Expts. 1-4) of 

increasing shear velocity (Unsworth, 2015), and marine data are from the Irish Sea.  Representative examples of individual 50 

bedforms and sequences were manually selected from these datasets. 

 

Ethical approval was given by the Ethics Review Sub-Committee at Loughborough University. 

 

ANN analysis to follow up the survey used a Multi-Layered Perceptron (MLP) with four hidden layers with 28, 56, 56 and 28 55 

nodes, each with a ReLU activation function. Height (H) and width (W) fitted using the SWT algorithm (Hillier, 2008) and a 

frustum approximation (Hillier, 2006), see Fig. 1c & d, were input to predict the flow regime (experiment number). Groups 

consisted of five bedforms.  Selection was random, and without replacement from a single time series until all bedforms in 

that time series were used. Weights and biases were updated using the Adam Optimiser of PyTorch using a loss function that 

calculates the Mean Squared Error (MSE), all within a feedforward back-propagation approach. 60 
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3 Results 

 

Of the 42 survey participants 25 self-identified as geoscientists, and 16 did not.  For Q1, participants correctly identified the 

one of four environments (e.g. fluvial, aeolian) in which individual features originated 32% of the time, slightly if significantly 

(2-tailed t-test, p ≪ 0.01) better than the 25% expected of guesswork. This rises to 51% for bedform sequences. For Q2, 65 

participants ranked entirely correctly 3 flow strengths (Expts. 1-3) for 46% of individual features, and 60% of sequences, much 

better than the 16% expected of guesswork (conservatively assuming no strength is repeated, p ≪ 0.01).  

 

In none of the questions did geoscientists perform better than non-geoscientists, with mean percentages of correct answers 

being indistinguishable (2-tailed t-test, p > 0.05). The overall sentiment is encapsulated by one comment: 70 

  

"I felt this was a geometrical exercise of recognising same patterns at different scales. I did not feel that my experience 

as an “expert” in bedforms really made any difference from, say, my son taking the test." 

4 Discussion 

The survey results clearly demonstrate it is possible to distinguish fluvial flow conditions from distance-depth data of the bed, 75 

and that an ANN should perform better if utilising sequences of bedforms rather than evaluating individuals in isolation. 

Geoscientists' a priori and contextual knowledge added little, indicating that training an ANN on these data alone should be 

productive.   

 

Morphologies from differing environments (e.g. glacial, fluvial) are often viewed as similar, indicators of analogous processes 80 

at work (e.g. Shaw, 1983), and modelled with identical equations (e.g. Fowler, 2002; Duran Vinet et al., 2019) or statistics 

(e.g. Hillier et al., 2016; Einstein, 1937). Several participants commented that their ability to distinguish environments might 

be to do with characteristics of the data (e.g. smoothness due to data resolution), not bedform shape, highlighting a potential 

pit-fall of training an ANN on raw distance-depth data. Another limitation is that ANNs performing pure pattern recognition 

need 1000s of training datasets (e.g. Bishop, 1996), which are not readily available in geoscience, and are apparently not 85 

needed by the survey's participants. Potentially, this requirement can be avoided by pre-processing to identify key aspects of 

a geomorphological pattern (e.g. Shumack et al., 2020).  

 

Shear velocity increases non-linearly across experiments 1 to 4. Fig. 1c-e present the outputs of a follow-up analysis into (i) 

the plausibility of building an ANN using only 4 time-series if pre-processing heights by fitting flat-topped cones to bedforms 90 

(Hillier, 2006, 2008), and (ii) the potential benefit of using short bedform sequences. Visually (Fig. 1d), the individual shapes 

(H, W) overlap between experiments, but the trends and averages over a number of points are distinctly different. This maps 
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directly to results of the ANN (Fig. 1e). Individual forms are weakly predicted (light grey, r2 = 0.11), but sub-sets of 5 bedforms 

more strongly so (grey, r2 = 0.56), particularly if very small bedforms present in all experiments (H < 0.5 cm) are excluded 

(dark grey, r2 = 0.80). Interestingly, simply taking the first four moments (mean, variance, skew, kurtosis) for arbitrarily located 95 

segments of the time-series, each 100 seconds long, yields better prediction (r2 = 0.89). Thus, insights from the participants 

have contributed to building an effective AI to reliably infer flow conditions from bedform morphology, yet a trade-off may 

exist between the most discriminating ANN (e.g. from statistical properties - (e.g. Malinverno, 1988; Powell et al., 2016; Singh 

et al., 2011)) and ease of relating outputs to process understanding and traditional shape parameters (i.e. H and W). In future, 

in transitional, non-equilibrium conditions (e.g. see Myrow et al., 2018), ANNs may be key to disentangling forms and flow. 100 

    

5 Audiences and wider application  

Geoscience communication in this work was by engaging with non-geoscientists as an integral part of a research project. In 

doing so, it introduced geomorphology as a discipline and illustrated an active research question. The practical geoscientific 

insight of wider interest is that derived properties of landscapes (e.g. shape parameters for several dunes) can assist training an 105 

AI where data are limited (i.e. observations of Earth, physical experiments).  
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Figure 1: (a) Illustrative bedform stability 'phase diagram' for unidirectional fluvial (i.e. river) bedforms, synthesized from multiple 
sources (Ohata et al., 2017; Lewis and McConchie, 1994; Southard and Boguchwal, 1990). Main types considered here (i.e. ripples 
and dunes) are highlighted. Experiments 1-4 are positioned indicatively. (b) Time-series like those given unannotated to participants, 175 
i.e. one from each experiment 1-3, all scaled to the same dimensions. Horizontal axis is time because in the flume tank a stationary 
sensor recorded height as bedforms passed beneath it. (c) Example of how H and W are determined. Measured heights (thick black 
line) are processed using the SWT algorithm to identify bedforms, drawing a line beneath them (thin black line) then approximated 
as flat-topped cones (grey lines). SWT parameters as Hillier (2008). (d) Height-width relationships for the 4 experiments, with colours 
as in (a): lines are sliding means with W (Gaussian weights, width 60), shaded areas are full ranges for Expts. 1 & 4, and dots are the 180 
means (±2𝝈) of upper quartile of the data when the small bedforms (i.e. H < 0.5 cm) are excluded. (e) Comparison of actual 
experiment number for out of sample prediction by the ANN using H and W: individual bedforms (light grey), subsets of 5 bedforms 
with (grey) and excluding (dark grey) small bedforms.  
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